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INTRODUCTION

Recent studies indicate that the wear and friction behavior of graphite
fiber-metal matrix composites can be substantially better than that of the
unreinforced matrix material [1-4]. The wear rates of bronze matrix com-
posites decrease with increasing Sn content, thus reflecting the contribution
of matrix hardness to wear resistance. Fiber orientation also has a signi-
ficant effect on wear; the best wear resistance occurs when the fiber ends are
normal to the sliding surface. This orientation prevents the fibers from
being plucked from the surface during sliding.

Metal matrix composites that contain low-modulus polyacrilonitrile
(PAN)-based graphite fibers have a lower wear rate than those containing
high-modulus rayon-based or PAN-based graphite fibers. The wear rates
of the various composites are related to the size of the debris particles
generated during sliding, which correlates with the grain size of the con-
stitutent graphite fiber.

The wear and friction behavio'r of metal matrix composites is also a
function of sliding speed. The sliding speed that results in minimum wear
is determined by the rate of oxide formation and surface destruction caused
by the softening of the matrix.

In the previous studies the conclusions were derived on the basis of only
one type each of low-modulus PAN-based, high-modulus PAN-based, and

rayon-based graphite fibers. In this study several different fibers were




examined, which included a high-modulus pitch-based fiber and additional {
high-modulus PAN-based and low-modulus PAN-based fibers.

The fiber fraction is expected to have a significant effect on the wear
and friction behavior of the composites. Unfortunately, the liquid infiltration
technique used in the processing of these composites is not amenable to
controlled variation of fiber content over a wide range. A characteristic 4
fiber fraction does occur for a specific fiber and matrix combination, and
some additional variation is possible by process modifications. In this study
the effect of intentionally produced and naturally occurring fiber fraction
variation on wear and friction behavior was examined.

The matrix effects resulting from varying Sn content in bronze indicate
that mechanical and chemical properties of the matrix should influence the
wear behavior of metal matrix composites. In this study more matrix
compositions including Cu and Ag alloys were examined than had been

examined in the past.




EXPERIMENTAL PROCEDURES

The composite materials were processed by a method described
elsewhere [2,5]. The graphite fibers used in this study and some of the
mechanical properties are given in Table I. Fibers not previously examined
include the high-modulus Type I PAN-based fiber, Modmor I; high-strength
Iype II PAN-based fiber, Celion 6000; and pitch-based Thornel Type VSA-11.
The properties of the composites fabricated and tested for this study are
given in Table II. A number of composites tested in this study were
fabricated previously, and their properties are to be found in a recent publica-
tion [2]. All alloys were prepared specifically for these composites except
the Al-bronze (alloy 954) and the Cu-Ag-P-Mg alloys (SSC 115), which are
commercially available. The tensile strengths of consolidated plates were
determined from the flexural strength of four-point bend specimens. For
those composites that were not processed in sufficient quantity to produce
bend specimens, the strengths are based on tensile tests performed on
precursor wire specimens by means of a technique previously described.
These specimens were tested against 4620 steel at 54 m/sec sliding speed at
room temperature in air without lubricant. The testing apparatus and de -
tails of the test procedure have been previously described ll] The volume
fractions of fiber given in Table II are those that would form naturally with
minimum fiber tension under Ar atmosphere during infiltration. One material,
Celion 6000/Cu-0.04Ag-0.05P-0. {{Mg (SSC 155), was also infiltrated under an

atmosphere consisting of 90Ar-10H to effect a greater fiber volume loading.
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RESULTS AND DISCUSSION

The wear behavior of the metal matrix composites is summarized in
Table III. The three fiber orientations studied are: fibers axis normal to
sliding surface (I), fiber axis parallel to sliding surface but normal to the
sliding direction (II), and fiber axis parallel to both sliding surface and
direction (III). The wear rates are expressed in both the weight lossed per
kilometer of sliding and the equivalent distance abraded away in the slider
specimen with a uniform wear rate for the sliding surface assumed. This
assumption does not always hold; therefore, weight-loss measurements
were used in the graphical presentation of the data. The coefficient of
friction values reported here are the averages obtained for each of the ten
sliding cycles to which the specimens were subjected.

In the previous study [2] the friction and wear rates of composites of
a high-modulus fiber, HM 3000, and a high-strength fiber, T 300, in a
Cu-1Sn matrix were compared. The friction and wear rate was higher for
the high-modulus fiber composite. The effect of the type of fiber was
examined more extensively in this work for both bronze and Ag matrix
composites, The wear and friction behavior for Orientation I fiber composites
are shown in Figs. ! and 2, respectively. The composites with high-modulus
fibers appear to have wear rates that are noticeably larger than those with
high-strength fibers. The variation in wear properties of the different
high-modulus fiber composites is in constrast to the relatively similar
behavior in the various high-strength composites. The difference in friction

behavior also is evident between the high-strength and high -modulus fiber
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Fig. 1. Fffect of Graphite Fiber Type in Wear of Various Metal
Matrix Composites for Fiber Orientation 1
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composites; however, the difference is not as pronounced as for the wear
behavior. The difference in friction for the various high-strength and high 1
modulus fiber composites is in contrast to the somewhat similar wear

behavior. For Orientations II and III the difference in wear behavior for the
high-modulus and high-strength fibers is even more pronounced, whereas the &
difference in friction behavior is less pronounced (Figs. 3 and 4).

The wear surface for high-strength and high-modulus fiber composites

with the same matrix (SSC t55) are shown in Fig. 5. Both materials have
alternating areas of smooth built-up ridges or asperities of smeared metal
and plowed troughs in which fiber and debris are exposed. The origin of
these alternating areas may be the machining and grinding marks on the
composite and ring specimens.  The difference in the trough areas of the
two composites is quite striking. The fiber debris for the high-modulus
pitch composite (VSA-11/SSC 155) can be over 30 pm in length, whereas that
for the high-strength fiber composite (Celion 6000/SCC 155) rarcly is greater
than 10 pm, and usually is much smaller. X-ray analysis indicates that the
arcas of smeared metal consist primarily of the composite matrix metal
Cu and Fe (presumably transferred from the steel mating ring). The ridge-
to-trough distance in the VSA-11/SSC 155 composite appears to be greater
than that for the Celion 6000/SSC 155 composite. Some iron was also found
in the plowed trough areas of the Celion 6000 /SSC {55 composite, but not
in the VSA-11/SSC 155 composite. The mating steel surface also had

alternating arcas, corresponding to the composite specimens, with a layer

-20-
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of Cu quite evident on the ridge area of the steel ring when run against

VSA-11/SSC 155. Considerably less Cu was transferred to the steel
ring when run against Celion 6000/SSC 155, These observations are sum-
marized in a schematic representation of the wear surfaces (Fig., 6). Wear
in the plowed trough area can occur by a process described in a previous
paper [3]. The oxide films that are implied in that model are not shown

in this representation. The high wear rate of the VSA-11/SSC 155 com-
posite results in more material transfer to the steel mating ring than does
the Celion 6000/SSC 155 composite, which is probably a consequence of the
greater fiber volume in the latter composite (42% compared ta 34%) than any
chemical or mechanical differences in the two fibers,

The fiber fraction effects were difficult to quantify because of experi-
mental problems associated with intentionally varying fiber content in a
controlled manner. Observations on existing composites such as the
HM 3000 /bronze indicate that there is a trend of decreasing wear rate with
increasing fiber fraction, but that there is no clear trend for the friction
(Fig. 7). This conclusion must be qualified, however, because the composites
with varying fiber fractions also have varying Sn content. Sn content effects
may therefore be masked by fiber fraction effects.

For Orientation I no consistent correlation between alloy strength and
tribological behavior could be found, although decreasing wear rate was

observed with increasing Sn content (hence, increasing matrix strength) for

Orientations II and IO of the HM 3000/bronze composites (Fig. 8).
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The orientation effect that is 80 pronounced in the Cu-based and
bronze composites appears to be inconsistent in (he Ap matrix compositos,

The wear rate of pure Ag matrix composites is actually preater for Orienta

tion I than for Orientations 11 and 111 (Fig. 9. Alloyving with Cu results in

similar wear propervties, vegardless of fiber orientations.,
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Fig. 9. Wear Rate and Friction of T 300/Ag Alloy Composites
for Three Fiber Orientations




CONCLUSIONS

The type of graphite fiber in the composite is the most significant factor
in the wear and friction behavior of metal matrix composites. The composites
with low-modulus PAN-based fibers have the lowest wear and friction rates.
The high-modulus PAN-based, rayon-based, and pitch-based fiber composites
have significantly higher wear rates and friction. Fiber fraction influences
wear rate,but not coefficient of friction for the high-modulus HM 3000 fiber/Sn-
bronze matrix composites. The fiber fraction effect is strong enough to mask
any effect of the Sn content of the matrix alloy. Neither the matrix alloy
strength nor the composite strength per se correlates with the friction and
wear properties; however, specific trends are evident for the various matrix
alloys (e.g., Ag, Cu, and bronze) with a given class of fibers (e.g., low-
modulus PAN, high-modulus PAN, and pitch). Significant fiber orientation
effects found for the high-modulus rayon and PAN precursor graphite fibers

were not evident for low-modulus or pitch precursor fibers in Ag alloys.
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LABORATORY OPERATIONS |

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the ¢valuation and
application of scientific advances to new military concepts and systems. Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aerophysics Laboratory: lLaunch and reentry aerodynamics, heat trans-

fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos- A
pheric optics, chemical reactions in polluted atmospheres, chemical reactions ¥
of excited species in rocket plumes, chemical thermodynamics, plasma and }

laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensgitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine,

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging: atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-

tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.
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